A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.

نویسندگان

  • Mary A Rohrdanz
  • Katie M Martins
  • John M Herbert
چکیده

We introduce a hybrid density functional that asymptotically incorporates full Hartree-Fock exchange, based on the long-range-corrected exchange-hole model of Henderson et al. [J. Chem. Phys. 128, 194105 (2008)]. The performance of this functional, for ground-state properties and for vertical excitation energies within time-dependent density functional theory, is systematically evaluated, and optimal values are determined for the range-separation parameter, omega, and for the fraction of short-range Hartree-Fock exchange. We denote the new functional as LRC-omegaPBEh, since it reduces to the standard PBEh hybrid functional (also known as PBE0 or PBE1PBE) for a certain choice of its two parameters. Upon optimization of these parameters against a set of ground- and excited-state benchmarks, the LRC-omegaPBEh functional fulfills three important requirements: (i) It outperforms the PBEh hybrid functional for ground-state atomization energies and reaction barrier heights; (ii) it yields statistical errors comparable to PBEh for valence excitation energies in both small and medium-sized molecules; and (iii) its performance for charge-transfer excitations is comparable to its performance for valence excitations. LRC-omegaPBEh, with the parameters determined herein, is the first density functional that satisfies all three criteria. Notably, short-range Hartree-Fock exchange appears to be necessary in order to obtain accurate ground-state properties and vertical excitation energies using the same value of omega.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional

Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...

متن کامل

A semiempirical long-range corrected exchange correlation functional including a short-range Gaussian attenuation (LCgau-B97)

We applied an improved long-range correction scheme including a short-range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau-B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long-range portion of Hartree-Fock (HF) exchange to excitation energies of large molecu...

متن کامل

Absorption and fluorescence properties of oligothiophene biomarkers from long-range-corrected time-dependent density functional theory.

The absorption and fluorescence properties in a class of oligothiophene push-pull biomarkers are investigated with a long-range-corrected (LC) density functional method. Using linear-response time-dependent density functional theory (TDDFT), we calculate excitation energies, fluorescence energies, oscillator strengths, and excited-state dipole moments. To benchmark and assess the quality of the...

متن کامل

Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory.

Adiabatic time-dependent density functional theory is a powerful method for calculating electronic excitation energies of complex systems, but the quality of the results depends on the choice of approximate density functional. In this article we test two promising new density functionals, M11 and M11-L, against databases of 214 diverse electronic excitation energies, and we compare the results ...

متن کامل

Coumarin dyes for dye-sensitized solar cells: A long-range-corrected density functional study.

The excited-state properties in a series of coumarin solar cell dyes are investigated with a long-range-corrected (LC) functional which asymptotically incorporates Hartree-Fock exchange. Using time-dependent density functional theory (TDDFT), we calculate excitation energies, oscillator strengths, and excited-state dipole moments in each of the dyes as a function of the range-separation paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 5  شماره 

صفحات  -

تاریخ انتشار 2009